16 research outputs found

    FoleyGen: Visually-Guided Audio Generation

    Full text link
    Recent advancements in audio generation have been spurred by the evolution of large-scale deep learning models and expansive datasets. However, the task of video-to-audio (V2A) generation continues to be a challenge, principally because of the intricate relationship between the high-dimensional visual and auditory data, and the challenges associated with temporal synchronization. In this study, we introduce FoleyGen, an open-domain V2A generation system built on a language modeling paradigm. FoleyGen leverages an off-the-shelf neural audio codec for bidirectional conversion between waveforms and discrete tokens. The generation of audio tokens is facilitated by a single Transformer model, which is conditioned on visual features extracted from a visual encoder. A prevalent problem in V2A generation is the misalignment of generated audio with the visible actions in the video. To address this, we explore three novel visual attention mechanisms. We further undertake an exhaustive evaluation of multiple visual encoders, each pretrained on either single-modal or multi-modal tasks. The experimental results on VGGSound dataset show that our proposed FoleyGen outperforms previous systems across all objective metrics and human evaluations

    Stack-and-Delay: a new codebook pattern for music generation

    Full text link
    In language modeling based music generation, a generated waveform is represented by a sequence of hierarchical token stacks that can be decoded either in an auto-regressive manner or in parallel, depending on the codebook patterns. In particular, flattening the codebooks represents the highest quality decoding strategy, while being notoriously slow. To this end, we propose a novel stack-and-delay style of decoding strategy to improve upon the flat pattern decoding where generation speed is four times faster as opposed to vanilla flat decoding. This brings the inference time close to that of the delay decoding strategy, and allows for faster inference on GPU for small batch sizes. For the same inference efficiency budget as the delay pattern, we show that the proposed approach performs better in objective evaluations, almost closing the gap with the flat pattern in terms of quality. The results are corroborated by subjective evaluations which show that samples generated by the new model are slightly more often preferred to samples generated by the competing model given the same text prompts

    Enhance audio generation controllability through representation similarity regularization

    Full text link
    This paper presents an innovative approach to enhance control over audio generation by emphasizing the alignment between audio and text representations during model training. In the context of language model-based audio generation, the model leverages input from both textual and audio token representations to predict subsequent audio tokens. However, the current configuration lacks explicit regularization to ensure the alignment between the chosen text representation and the language model's predictions. Our proposal involves the incorporation of audio and text representation regularization, particularly during the classifier-free guidance (CFG) phase, where the text condition is excluded from cross attention during language model training. The aim of this proposed representation regularization is to minimize discrepancies in audio and text similarity compared to other samples within the same training batch. Experimental results on both music and audio generation tasks demonstrate that our proposed methods lead to improvements in objective metrics for both audio and music generation, as well as an enhancement in the human perception for audio generation.Comment: 5 page

    Exploring Speech Enhancement for Low-resource Speech Synthesis

    Full text link
    High-quality and intelligible speech is essential to text-to-speech (TTS) model training, however, obtaining high-quality data for low-resource languages is challenging and expensive. Applying speech enhancement on Automatic Speech Recognition (ASR) corpus mitigates the issue by augmenting the training data, while how the nonlinear speech distortion brought by speech enhancement models affects TTS training still needs to be investigated. In this paper, we train a TF-GridNet speech enhancement model and apply it to low-resource datasets that were collected for the ASR task, then train a discrete unit based TTS model on the enhanced speech. We use Arabic datasets as an example and show that the proposed pipeline significantly improves the low-resource TTS system compared with other baseline methods in terms of ASR WER metric. We also run empirical analysis on the correlation between speech enhancement and TTS performances.Comment: Submitted to ICASSP 202

    A Context-Driven Modelling Framework for Dynamic Authentication Decisions

    Get PDF
    International audienceNowadays, many mechanisms exist to perform authentication, such as text passwords and biometrics. However, reasoning about their relevance (e.g., the appropriateness for security and usability) regarding the contextual situation is challenging for authentication system designers. In this paper, we present a Context-driven Modelling Framework for dynamic Authentication decisions (COFRA), where the context information specifies the relevance of authentication mechanisms. COFRA is based on a precise metamodel that reveals framework abstractions and a set of constraints that specify their meaning. Therefore, it provides a language to determine the relevant authentication mechanisms (characterized by properties that ensure their appropriateness) in a given context. The framework supports the adaptive authentication system designers in the complex trade-off analysis between context information, risks and authentication mechanisms, according to usability, deployability, security, and privacy. We validate the proposed framework through case studies and extensive exchanges with authentication and modelling experts. We show that model instances describing real-world use cases and authentication approaches proposed in the literature can be instantiated validly according to our metamodel. This validation highlights the necessity, sufficiency, and soundness of our framework

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Towards a Better Understanding of Impersonation Risks

    No full text
    International audienceIn many situations, it is of interest for authentication systems to adapt to context (e.g., when the user's behavior differs from the previous behavior). Hence, during authentication events, it is common to use contextually available features to calculate an impersonation risk score. This paper proposes an explainability model that can be used for authentication decisions and, in particular, to explain the impersonation risks that arise during suspicious authentication events (e.g., at unusual times or locations). The model applies Shapley values to understand the context behind the risks. Through a case study on 30,000 real world authentication events, we show that risky and nonrisky authentication events can be grouped according to similar contextual features, which can explain the risk of impersonation differently and specifically for each authentication event. Hence, explainability models can effectively improve our understanding of impersonation risks. The risky authentication events can be classified according to attack types. The contextual explanations of the impersonation risk can help authentication policymakers and regulators who attempt to provide the right authentication mechanisms, to understand the suspiciousness of an authentication event and the attack type, and hence to choose the suitable authentication mechanism

    Towards a Better Understanding of Impersonation Risks

    No full text
    International audienceIn many situations, it is of interest for authentication systems to adapt to context (e.g., when the user's behavior differs from the previous behavior). Hence, during authentication events, it is common to use contextually available features to calculate an impersonation risk score. This paper proposes an explainability model that can be used for authentication decisions and, in particular, to explain the impersonation risks that arise during suspicious authentication events (e.g., at unusual times or locations). The model applies Shapley values to understand the context behind the risks. Through a case study on 30,000 real world authentication events, we show that risky and nonrisky authentication events can be grouped according to similar contextual features, which can explain the risk of impersonation differently and specifically for each authentication event. Hence, explainability models can effectively improve our understanding of impersonation risks. The risky authentication events can be classified according to attack types. The contextual explanations of the impersonation risk can help authentication policymakers and regulators who attempt to provide the right authentication mechanisms, to understand the suspiciousness of an authentication event and the attack type, and hence to choose the suitable authentication mechanism

    Towards a Better Understanding of Impersonation Risks Anonymous

    No full text
    International audienceIn many situations, it is of interest for authentication systems to adapt to context (e.g., when the user's behavior differs from the previous behavior). Hence, during authentication events, it is common to use contextually available features to calculate an impersonation risk score. This paper proposes an explainability model that can be used for authentication decisions and, in particular, to explain the impersonation risks that arise during suspicious authentication events (e.g., at unusual times or locations). The model applies Shapley values to understand the context behind the risks. Through a case study on 30,000 real world authentication events, we show that risky and nonrisky authentication events can be grouped according to similar contextual features, which can explain the risk of impersonation differently and specifically for each authentication event. Hence, explainability models can effectively improve our understanding of impersonation risks. The risky authentication events can be classified according to attack types. The contextual explanations of the impersonation risk can help authentication policymakers and regulators who attempt to provide the right authentication mechanisms, to understand the suspiciousness of an authentication event and the attack type, and hence to choose the suitable authentication mechanism

    Towards a Better Understanding of Impersonation Risks

    No full text
    International audienceIn many situations, it is of interest for authentication systems to adapt to context (e.g., when the user's behavior differs from the previous behavior). Hence, during authentication events, it is common to use contextually available features to calculate an impersonation risk score. This paper proposes an explainability model that can be used for authentication decisions and, in particular, to explain the impersonation risks that arise during suspicious authentication events (e.g., at unusual times or locations). The model applies Shapley values to understand the context behind the risks. Through a case study on 30,000 real world authentication events, we show that risky and nonrisky authentication events can be grouped according to similar contextual features, which can explain the risk of impersonation differently and specifically for each authentication event. Hence, explainability models can effectively improve our understanding of impersonation risks. The risky authentication events can be classified according to attack types. The contextual explanations of the impersonation risk can help authentication policymakers and regulators who attempt to provide the right authentication mechanisms, to understand the suspiciousness of an authentication event and the attack type, and hence to choose the suitable authentication mechanism
    corecore